Polar Coordinates And Equations =============================== .. image:: reflections/9.png :alt: Reflection 9 would go here How to graph polar coordinates ------------------------------ **Source**: **Explanation**: This artifact demonstrates how to graph polar coordinates. In the polar coordinate :math:`P(2, { \pi \over 3})`, the directed distance is 2, and the directed angle is :math:`\pi \over 3`. So the pole starts at 2 on the O ray, and swivels out by :math:`\pi \over 3` degrees. **Artifact**: Plot the point :math:`P(2, { \pi \over 3})` .. image:: graphs/9_graph_coord.png Converting polar coordinates to rectangular coordinates and rectangular to polar -------------------------------------------------------------------------------- **Source**: Notes, Section 6.4 example 3A **Explanation**: This artifact demonstrates converting polar coordinates to rectangular coordinates and rectangular to polar. #. In this example I use the equation :math:`r^2 = x^2 + y^2` to solve for the directed distance (x) and :math:`tan^{-1}({y \over x})` to solve for the directed angle (y). #. In this example I use the formulas :math:`x = r \cos \theta \text{ and } y = r \sin \theta`, and my knowledge of the unit circle, to calculate the approximate values of x and y. **Artifact**: #. Convert the rectangular coordinate (2,7) into a polar coordinate. :math:`r = \sqrt{2^2 + 7^2} = \sqrt{53}\\ tan^{-1}({7 \over 2}) = 74^\circ` Polar coordinate = :math:`(\sqrt{53}, 74^\circ)` #. Convert the polar coordinate :math:`(3, {5\pi \over 6})` into a rectangular coordinate. :math:`x = r \cos \theta\\ x = 3 \cos {5 \pi \over 6}\\ x = 3(-{\sqrt{3} \over 2}) \approx -2.60` :math:`y = r \sin\theta\\ y = 3 \sin {5 \pi \over 6}\\ y = 3({1 \over 2}) \approx 1.5` Rectangular coordinate = :math:`(-2.60, 1.5)` Converting polar equations to rectangular equations and rectangular to polar ---------------------------------------------------------------------------- **Source**: Section 6.4 Example 5 and Example 6 **Explanation**: This artifact demonstrates converting polar equations to rectangular equations and rectangular to polar. :math:`r^2 = x^2 + y^2\\ x = r \cos \theta\\ y = r \sin \theta` #. Here I simplify :math:`r = 4 \sec \theta` into :math:`r \cos \theta` so I can substitute for :math:`x` using the formula :math:`x = r \cos \theta`. The answer is the line :math:`x = 4`. #. Here I simplify the original equation into x's and y's in both the second and first degree because I can subsitute them with the conversion formulas :math:`\\x = r \cos \theta \text{ and } y = r \sin \theta` to convert them from rectangular form into polar form. **Artifact**: #. Convert :math:`r = 4 \sec \theta` to rectangular form. .. math:: r = 4 \sec \theta {r \over \sec \theta} = 4 r \cos \theta = 4 x = 4 #. Convert :math:`(x-3)^2 + (y-2)^2 = 13` to polar form. .. math:: (x-3)^2 + (y-2)^2 = 13 x^2 - 6x + 9 + y^2 -4y + 4 = 13 x^2 + y^2 -6x -4y = 0 r^2 - 6r \cos \theta -4r \sin \theta = 0 r(r - 6 \cos \theta - 4 \sin \theta) = 0 r = 0 \text{ or } r - 6 \cos \theta - 4 \sin \theta = 0 Graphs of polar equations ------------------------- **Source**: Section 6.5 Example 5 **Explanation**: This artifact demonstrates graphs of polar equations. From graphing the polar equation :math:`r = 3 -3 \sin x` in radian/function mode, I can tell that the maximum r value is 6 because that is the highest y value you can ever get on this particulur sinusoid. .. image:: graphs/9_graph.png :height: 500px :width: 700 px The rest of the information can be gathered visually. **Artifact**: Analyze the graph of :math:`r = 3 -3 \sin \theta`. Domain: All real numbers Range: [0, 6] Symmetric about the y-axis Maximum r-value = 6